
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025 

 

Application of String Matching and Regular 

Expression in Lexical Analysis for Programming 

Languages 

Henry Filberto Shenelo - 13523108 

Program Studi Teknik Informatika 

Sekolah Teknik Elektro dan Informatika 

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung 

E-mail: henryfilbertoshenelo@gmail.com , 13523108@std.stei.itb.ac.id   

 
 

Abstract— Lexical analysis plays a critical role in the 

compilation process by transforming raw source code into 

structured tokens. However, with the increasing complexity of 

programming languages and growing codebases, traditional 

regex-based lexers face challenges in performance and scalability. 

This study explores the application of string-matching 

algorithms—Knuth-Morris-Pratt (KMP), Boyer-Moore, and Aho-

Corasick—as alternatives or supplements to regular expressions 

for keyword detection in lexical analysis. By implementing and 

benchmarking multiple lexer variants, including a regex-only 

baseline and hybrid manual lexers, the paper evaluates their 

performance across various input sizes and edge cases, including 

illegal characters. Results show that Aho-Corasick offers the best 

overall performance, combining speed with robust error handling. 

These findings highlight the potential of integrating string-

matching techniques into modern lexer implementations for more 

efficient and resilient compiler front-ends. 

Keywords— Lexical analysis, string matching, Aho-Corasick, 

compiler, regular expressions. 

I.  INTRODUCTION  

Lexical analysis is a fundamental phase in the compilation 
process, transforming source code into a sequence of tokens that 
serve as the basis for syntax parsing and semantic analysis. A 
lexer, or lexical analyzer, must efficiently identify language 
constructs such as keywords, identifiers, literals, and symbols 
while handling increasing code complexity and volume. 
Traditionally, lexers rely heavily on regular expressions due to 
their expressive power and compatibility with finite automata, 
which enable efficient linear-time scanning of input. 

However, regex-based tokenization can become inefficient 
when distinguishing between keywords and identifiers, 
especially in languages with large or evolving keyword sets. To 
address this, string matching algorithms such as Knuth-Morris-
Pratt (KMP), Boyer-Moore, and Aho-Corasick offer optimized 
methods for pattern recognition, particularly for fixed patterns 
like keywords. These algorithms can reduce redundant 
comparisons and improve keyword matching performance. 

This paper explores a hybrid approach to lexical analysis that 
combines regular expressions for general token types with 
string-matching algorithms for fast keyword recognition. 

Implementations of manual lexers using KMP, Boyer-Moore, 
and Aho-Corasick are compared against a baseline regex-only 
lexer and a lexer built using the ply.lex library. Performance 
benchmarks and error-handling tests are conducted to evaluate 
the speed, accuracy, and resilience of each method across 
multiple input sizes and scenarios. 

The remainder of this paper is organized as follows: Section 
II introduces the theoretical foundations behind regular 
expressions, finite automata, and classic string-matching 
algorithms including KMP, Boyer-Moore, and Aho-Corasick. 
Section III describes the implementation of multiple lexer 
variants using regex and manual string matching. Section IV 
presents experimental results, including performance 
benchmarks and tokenization outputs. Finally, Section V 
concludes with key takeaways and suggestions for future 
improvements in lexical analysis techniques. 

II. THEORETICAL BASIS 

A. Pattern Matching 

Pattern matching is the process of finding the occurrence of 
a specific sequence of characters, known as a pattern, within a 
larger body of text. Formally, given: 

T: a text string of length n characters, and 

P: a pattern string of length m characters (m << n) 

Maintaining the Integrity of the Specifications 

the goal is to identify the position(s) in T where P appears as 
a contiguous substring. Efficient algorithms like Knuth-Morris-
Pratt (KMP) and Aho-Corasick are often employed to perform 
pattern matching in optimal or near-optimal time. 

B. Knuth-Morris Pratt (KMP) Algorithm 

The Knuth-Morris-Pratt (KMP) algorithm is an efficient 

pattern matching algorithm that searches for a pattern string 𝑃 

of length m within a text string T of length n from left to right. 

When a mismatch occurs at position j in P, the algorithm uses 

a border function (failure function) to determine the longest 

prefix of P[0..j-1] that is also a suffix of P[0..j-1]. The KMP 

algorithm consists of two main steps: 

mailto:henryfilbertoshenelo@gmail.com
mailto:13523108@std.stei.itb.ac.id


Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025 

 

1. Preprocessing: Compute the border function for the 

pattern. 

2. Searching: Use the border function to perform pattern 

matching throughout the text (T). 

 
 

 

 

 

 

 

 

 

 

 

Figure 1. Pattern matching with KMP algorithm 

Source: [2] 

 

C. Aho-Corasick Algorithm 

The Aho-Corasick algorithm begins by building a trie from 

all the patterns, where each node represents a character. Suffix 

links are then added to efficiently handle mismatches by 

pointing to the longest valid suffix that is also a prefix of 

another pattern. Output links are used to detect overlapping 

pattern matches. During text processing, the automaton moves 
forward on matching characters or follows suffix links on 

mismatches. When reaching an accepting node, a match is 

recorded, and output links are checked for additional matches 

at the same position. 

 

 
 

Figure 2. Example trie of Aho-Corasick 

Source: [1] 

 

D. Boyer-Moore Algorithm 

The Boyer-Moore algorithm is a fast pattern-matching 

algorithm that scans the pattern from right to left using the 

looking-glass technique and applies character jump heuristics 

to skip ahead in the text during mismatches. It precomputes a 

last occurrence table, which maps each character in the alphabet 

to its last position in the pattern. When a mismatch occurs, the 

algorithm uses this table to decide how far the pattern can safely 
be shifted to the right, potentially skipping multiple 

comparisons. There are 3 cases:  

1. If the mismatched character exists in the pattern, it aligns 

with its last occurrence (Case 1). 

2. If not or if it cannot be aligned, the pattern shifts by one 

(Case 2)  

3. Else: aligns the start of the pattern with the next character 
in the text (Case 3).  

This reduces unnecessary comparisons, making Boyer-Moore 

efficient, especially for large alphabets and long texts. 

 

 

 

 

 

 

 

 

 
 

Figure 3. Pattern matching with BM algorithm 

Source: [2] 

E. Regular Expression 

A regular expression (regex) is a formal notation used to 

describe patterns within strings. It originates from formal 

language theory and automata, particularly regular languages. 

A regex defines a set of rules that can be used to identify or 

match specific sequences of characters, such as words, digits, 

or symbols, making it useful for validating formats or extracting 

information from text. 

F. Lexical Analyzer 

Lexical analyzer is the first phase of a compiler whose 

primary function is to read the source program's input 

characters, group them into lexemes, and convert them into a 

sequence of tokens. These tokens are then passed to the parser 

for syntax analysis. During this process, the lexical analyzer 

may also interact with the symbol table, especially when 

identifying identifiers that need to be recorded or looked up.  

 
In its operation, the lexical analyzer typically removes 

unnecessary elements such as whitespace and comments to 

simplify the input stream for subsequent phases. Lexical 

analysis involves three key concepts:  

1. A token is a pair ⟨token name, optional attribute⟩, where 

the name (e.g., IF, ID, NUMBER) is used by the parser, 

and the attribute holds extra information 

2. A pattern defines the structure a lexeme must follow to 

be recognized as a token. For fixed tokens like 

keywords, the pattern is the exact character sequence. 

For more general tokens like identifiers or numbers, the 
pattern is typically expressed using regular expressions. 

3. A lexeme is the actual sequence of characters in the 

source program that matches a given pattern. The 

lexical analyzer identifies this sequence and classifies 

it as an instance of the corresponding token. 

 

 

 



Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025 

 

Table 1. Tokens, patterns, and lexemes 

 

 

G. Finite Automata 

Finite automata convert regular expressions into working 

lexical analyzers. Finite automata come in two types: 

1. Nondeterministic Finite Automata (NFA): Allow 

multiple transitions for the same input symbol and can 

include ε-transitions (transitions without consuming 

input). 

2. Deterministic Finite Automata (DFA): For each state 

and input symbol, there is exactly one defined 

transition, and ε-transitions are disallowed.\ 

 

Although nondeterministic finite automata (NFAs) are easier 
to construct from regular expressions, lexical analyzers typically 
simulate deterministic finite automata (DFAs) due to their 
predictable control flow. Every NFA can be converted into a 
DFA through subset construction, ensuring both recognize the 
same regular language. 

In practice, these DFA-based transition diagrams are 

implemented using control structures like switch-case 

statements or transition tables. This approach allows lexical 

analyzers to efficiently match lexemes against regular 

expression patterns. Reserved words and identifiers, for 

instance, can be differentiated either through tailored DFA 

structures or symbol table lookups after matching a general 

identifier pattern. 

III. IMPLEMENTATION 

Based on the theoretical basis, we implement a simple lexical 
analyzer (lexer) to tokenize source code into keywords, 
identifiers, literals, and symbols. We explore the use of regex 
and compare multiple approaches to tokenize, including the use 
of built-in lex library, Knuth-Morris-Pratt (KMP), Boyer-
Moore, and Aho-Corasick automata. The following codes are 
written in Python inspired by the project from 
https://github.com/airportyh/smallang and modified to handle a 
broader set of language features and token types. 

 First, we define the keywords/reserved words that are going 
to be used in our custom programming language. 

 

 

 

Then, we define the tokens used, which serve as the building 

blocks for syntax analysis by representing distinct elements like 

keywords, operators, and literals. 

 

 
 

 

 

 

 

 

 

 

 

Each of the tokens then can be represented in the form of regular 

expressions 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

Furthermore, we add other rules using regular expressions 

for the lexical analyzer. Some of the regexes implemented are: 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Token Description Lexemes 

if characters i, f if 

else characters e, l, s, e else 

comparison < , >, <=, >=, !=, == <=, != 

id letter followed by 

letters or digits 

pi, score 

number numeric constant 0, 2.7, 3.14 

literal anything surrounded 

by “ 

“error” 

keywords = { 

    'if', 'else', 'while', 'for', 'in', 'do', 'match', 'switch', 'case',  

} 
 

tokens = ( 

    'WS', 'COMMENT', 'NUMBER', 'STRING', 

    'LPAREN', 'RPAREN', 'LBRACE', 'RBRACE', 

    'LBRACKET', 'RBRACKET',           
    'IDENT', 'FATARROW', 'ASSIGN', 'NL', 

    'KEYWORD', 'COMMA', 'COLON',     

    'DOT',                            

) 

 

t_LPAREN    = r'\(' 

t_RPAREN    = r'\)' 

t_LBRACE    = r'\{' 

t_RBRACE    = r'\}' 

t_LBRACKET  = r'\['             

t_RBRACKET  = r'\]'             
t_FATARROW  = r'=>' 

t_ASSIGN    = r'=' 

t_COMMA     = r',' 

t_COLON     = r':'              

t_DOT       = r'\.'  

 

def t_WS(t): //ignore whitespace 

    r'[ \t\r]+' 

    pass 

 

def t_COMMENT(t): //ignore comment 
    r'\/\/[^\n\r]*' 

    pass 

 

def t_MLCOMMENT(t): //ignore multi-comment 

    r'/\*(.|\n|\r)*?\*/' 

    t.lexer.lineno += t.value.count('\n') 

    pass 

 

def t_FLOAT(t): //convert to float 

    r'[0-9]+\.[0-9]*([eE][+-]?[0-9]+)?' 

    t.value = float(t.value) 
    return t 

 

def t_NUMBER(t): //convert to int 

    r'0|[1-9][0-9]*' 

    t.value = int(t.value) 

    return t 

 

 

 

 

https://github.com/airportyh/smallang


Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

The next step is to implement KMP for the pattern 

matching. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

We then also implement Boyer-Moore for comparison of 

different pattern matching methods. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

We can finally implement manual tokenization with three 

different approaches and regular expressions. 

 

 

 

 

 

 

 
 

 

 

 

 

 

def kmp_table(pattern: str): //border function 

    m = len(pattern) 

    fail = [0] * m 

    j = 0 

    for i in range(1, m): 

        while j > 0 and pattern[j] != pattern[i]: 

            j = fail[j - 1] 
        if pattern[j] == pattern[i]: 

            j += 1 

            fail[i] = j 

    return fail 

 

def kmp_match(text: str, pattern: str, table): 

    if len(text) != len(pattern): 
        return False 

    if table is None: 

        table = kmp_table(pattern) 

    i = j = 0 

    n = len(text) 

    m = len(pattern) 

    while i < n: 

        if text[i] == pattern[j]: 

            i += 1; j += 1 

            if j == m:          # found pattern 

                return True      # exact length check  
        else: 

            if j == 0: 

                i += 1 

            else: 

                j = table[j - 1] 

    return False 

 

def t_STRING(t): //convert string 
    r'"(?:\\[ntr"\\]|[^\\\n\r"])*"' 

    t.value = bytes(t.value[1:-1], "utf-

8").decode("unicode_escape") 

    return t 

 

def t_IDENT(t): //identifiers 

    r'[a-zA-Z_][a-zA-Z_0-9]*' 

    if t.value in keywords: 

        t.type = 'KEYWORD' 

    return t 

 
def t_NL(t): //new line 

    r'\r?\n+' 

    t.lexer.lineno += len(t.value) 

    pass 

 

def t_error(t): //illegal characters 

    print(f'Illegal character {t.value[0]!r} at line 

{t.lexer.lineno}') 

    t.lexer.skip(1) 

 

 

 
 

def bm_last_table(pattern: str): //last occurrence table 

    last = [-1] * 128 

    for i, ch in enumerate(pattern): 

        last[ord(ch) & 0x7F] = i 

    return last 

 
 

 

 
def bm_match(text: str, pattern: str, last=None) -> bool: 

     

    if len(text) != len(pattern): 

        return False 

    if last is None: 

        last = bm_last_table(pattern) 

 

    n = len(text) 

    m = len(pattern) 

    i = m - 1        // index in text 

    j = m - 1       // index in pattern 
 

    while i < n: 

        if text[i] == pattern[j]: 

            if j == 0: 

                return True         // full match 

            i -= 1 

            j -= 1                   // looking-glass 

        else: 

            lo = last[ord(text[i]) & 0x7F]   

// last occurrence of mismatched char 

            i += m - min(j, 1 + lo)    // character-jump 

            j = m - 1                        
    return False 

 

import ahocorasick 

A = ahocorasick.Automaton() 

for kw in keyword_list: 

    A.add_word(kw, kw) 

A.make_automaton() 

 

def tokenize(code: str) -> List[Token]: 

    tokens: List[Token] = [] 

 

    # Position bookkeeping 

    line = 1 

    last_nl_idx = -1   # index of last '\n' before current 

token 

 

    pos = 0 

    n = len(code) 



Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

IV. RESULTS 

The results of the implemented lexer with different test cases 
are shown here.  

 First, we test with simple code written in our custom 
programming language. Here is the sample of the file written in 
that language (short.aban). 

 

 

 

 

 

The results of the lexical analysis using regex and ply.lex are 
shown on Table 2 

Table 2. Tokenization results of given sample code 

 

The same lines of code are also tested using manually built lexer 
with the help of string matching. The results are shown below. 

Table 3. Manual tokenization results of given sample code 

 

We also conduct benchmark tests to compare the time taken to 
tokenize different files with different lengths using every 
method discussed. 

 

 

 

Token Type Token Value Line Position 

KEYWORD print 2 42 

LPAREN ( 2 47 

STRING Hello, world 2 48 

RPAREN ) 2 62 

KEYWORD print 3 64 

LPAREN ( 3 69 

STRING 3 + 5 3 70 

COMMA , 3 79 

IDENT add 3 81 

LPAREN ( 3 84 

NUMBER 3 3 85 

COMMA , 3 86 

NUMBER 5 3 88 

RPAREN ) 3 89 

RPAREN ) 3 90 

Token Type Token Value Line Column 

KEYWORD print 2 1 

LPAREN ( 2 6 

STRING Hello, world 2 7 

RPAREN ) 2 21 

KEYWORD print 3 1 

LPAREN ( 3 6 

STRING 3 + 5 = 3 7 

COMMA , 3 16 

IDENT add 3 18 

LPAREN ( 3 21 

NUMBER 3 3 22 

COMMA , 3 23 

NUMBER 5 3 25 

RPAREN ) 3 26 

RPAREN ) 3 27 

while pos < n: 

        m = _master_pat.match(code, pos) 

        if not m:  # no match => illegal character 

            snippet = code[pos:pos+20].splitlines()[0] 

            raise SyntaxError(f"Illegal character 
{code[pos]!r} " 

                              f"at line {line} col {pos - 

last_nl_idx}\n→ {snippet}") 

        kind = m.lastgroup 

        value = m.group(kind) 

 

        newlines = value.count("\n") 

        if newlines: 

            line += newlines 

            last_nl_idx = m.end() - 1 - value[::-

1].find("\n")  # idx of final \n in this match 
 

        # Skip whitespace/comments 

        if kind in _skip_types: 

            pos = m.end() 

            continue 

 

        # Calculate 1-based column 

        col = m.start() - last_nl_idx 

 

        # Value conversions  

        if kind == "STRING": 

            value = bytes(value[1:-1], "utf-
8").decode("unicode_escape") 

        elif kind == "FLOAT": 

            value = float(value) 

        elif kind == "HEX": 

            value = int(value, 16) 

        elif kind == "BIN": 

            value = int(value, 2) 

        elif kind == "NUMBER": 

            value = int(value) 

 

        # Keyword check  
        if kind == "IDENT" and is_keyword(value): 

            kind = "KEYWORD" 

 

        tokens.append(Token(kind, value, line, col)) 

        pos = m.end() 

 

    return tokens 

 

 

// ---------- Helper Functions ---------- 

print("Hello, world") 

print("3 + 5 =", add(3, 5)) 



Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025 

 

1. Short code (8 words)  

Table 4. Time comparison to process short code 

 

 
2. Medium code (93 words)  

Table 5. Time comparison to process medium code 

 

 
3. Long code (471 words)  

Table 6. Time comparison to process long code 

 

We also test tokenization of a file with illegal characters and 

compare the time taken by each method. 

 
 

 

 

 

 

 

 

     
 

 

 

 

 

 

 

Figure 4. Example result to detect illegal character in 

tokenization 

 
Table 7. Time comparison to process file with illegal characters 

 
The results demonstrate slight performance advantages 

when integrating string matching into a lexer, particularly using 
the Aho-Corasick algorithm. As shown in the benchmark tables, 
Aho-Corasick consistently outperforms the other approaches 
across short and medium file sizes. However, there is no 
noticeable difference between Aho-Corasick performance for 
long file code and “without string matching” lexer.  

Overall, Aho-Corasick’s ability to match multiple patterns 
simultaneously in linear time leads to speed-ups, compared to 
the regex-only baseline. Meanwhile, the Boyer-Moore and KMP 
implementations, though theoretically efficient, suffer from 
overhead due to repeated pattern comparisons for each keyword, 
making them slower than even the baseline in larger inputs. The 
regex-only approach, while being competitive, lacks keyword 
awareness, and also perform worse for short codes. 

The manual lexers showed good performance in handling 
illegal characters. Among them, the Aho-Corasick lexer not only 
maintained the fastest processing times but also detected illegal 
characters efficiently, making it highly suitable for continuous 
analysis in tools like editors or compilers. KMP and Boyer-
Moore also performed well in this aspect, offering solid error 
handling and competitive speed.  

 

 

 

No 
Without 

string 
matching 

KMP 
Boyer-
Moore 

Aho-
Corasick 

1 0.00306 0.00048 0.000484 0.00033 

2 0.001149 0.000516 0.0004785 0.0003158 

3 0.001887 0.000759 0.0006542 0.000439 

4 0.002208 0.001046 0.000735 0.000406 

5 0.0010989 0.0004916 0.0004564 0.0003149 

Avg 0.00188 0.000658 0.000562 0.000361 

No 
Without 
string 

matching 
KMP 

Boyer-
Moore 

Aho-
Corasick 

1 0.003469 0.0068031 0.006926 0.003649 

2 0.0044389 0.005397 0.0054302 0.0028848 

3 0.0034599 0.0074711 0.0052853 0.0026011 

4 0.004053 0.0055969 0.0055421 0.0030429 

5 0.006241 0.005499 0.0063687 0.0041024 

Avg 0.004332 0.006153 0.005910 0.003256 

No 
Without 

string 
matching 

KMP 
Boyer-
Moore 

Aho-
Corasick 

1 0.007013 0.014898 0.00786 0.00449 

2 0.005632 0.0100315 0.0081276 0.004505 

3 0.005958 0.013833 0.010863 0.0056857 

4 0.0103468 0.009138 0.0099435 0.0059944 

5 0.00568 0.0104329 0.0163726 0.0058612 

Avg 0.006926 0.01167 0.01063 0.005307 

No 
Without 
string 

matching 
KMP 

Boyer-
Moore 

Aho-
Corasick 

1 0.024489 0.0533 0.048673 0.0273208 

2 0.027188 0.0519959 0.0551206 0.027423 

3 0.023817 0.05903 0.055695 0.0307356 

4 0.023297 0.0556105 0.054404 0.0232055 

5 0.0309209 0.0526324 0.04748789 0.0284981 

Avg 0.0259424 0.0545138 0.052276 0.0274366 



Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025 

 

V. CONCLUSION 

The integration of regular expressions with string-matching 

algorithms such as Knuth-Morris-Pratt, Boyer-Moore, and 

Aho-Corasick enhances the efficiency of lexical analyzers. 

Regular expressions provide a robust foundation for pattern 

recognition, while string-matching algorithms optimize 

keyword detection by reducing redundant comparisons. Among 

these, Aho-Corasick stands out for its ability to match multiple 

patterns simultaneously with minimal overhead, making it 

particularly well-suited for large-scale or real-time lexical 

analysis. The experimental results confirm that combining these 

techniques yields faster tokenization, faster error handling, and 

improved scalability, demonstrating their practical value in 
building modern, high-performance compiler front-ends. 

 

VI. APPENDIX 

Source code used in Section III Implementation can be viewed 

here: https://github.com/henry204xx/abanlang  

 

VIDEO LINK AT YOUTUBE  

https://youtu.be/DrofxSiNxgE  

ACKNOWLEDGMENT  

The Author would like to express gratitude to Mr. Rinaldi 

Munir, the lecturer for Algorithm Strategy at Bandung Institute 

of Technology, for his guidance and comprehensive teaching of 

the subject, which provided the foundation for understanding the 

concepts applied in this paper. 

 

The Author also acknowledges the various sources of 
information that greatly contributed to the completion of this 

paper. These include academic journals, articles, online 

resources, and publicly available code repositories, all of which 

offered invaluable insights and practical tools necessary for the 

development of this work. 

REFERENCES 

[1] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles, 

Techniques, and Tools, 2nd ed. Pearson, 2006. 

[2] R. Munir, “Pencocokan string,” Kuliah STMIK, 2025. [Online]. 
Available: https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-

2025/23-Pencocokan-string-(2025).pdf 

[3] R. Munir, “String matching dengan regex,” Kuliah STMIK, 2025. 
[Online]. Available: 

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/24-

String-Matching-dengan-Regex-(2025).pdf 

[4] airportyh, “Smallang: A small programming language demo,” GitHub 

Repository. [Online]. Available: https://github.com/airportyh/smallang 

[5] B. Sukumaran, “The essence of Aho-Corasick algorithm,” Medium, 2020. 

[Online]. Available: https://medium.com/@balajisukumaran96/the-

essence-of-aho-corasick-algorithm-4056dd742842 

[6] V. Paxson et al., “Flex: The fast lexical analyzer,” Flex Manual, [Online]. 

Available: https://westes.github.io/flex/manual/ 

 

 

PERNYATAAN 

Dengan ini saya menyatakan bahwa makalah yang saya tulis ini 

adalah tulisan saya sendiri, bukan saduran, atau terjemahan dari 

makalah orang lain, dan bukan plagiasi. 

 

Bandung, 24 Juni 2025 
 

 

 

 

Henry Filberto Shenelo 13523108 

    

 

 
 

 

 

 
 

https://github.com/henry204xx/abanlang
https://youtu.be/DrofxSiNxgE
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/23-Pencocokan-string-(2025).pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/23-Pencocokan-string-(2025).pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/24-String-Matching-dengan-Regex-(2025).pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/24-String-Matching-dengan-Regex-(2025).pdf
https://github.com/airportyh/smallang
https://medium.com/@balajisukumaran96/the-essence-of-aho-corasick-algorithm-4056dd742842
https://medium.com/@balajisukumaran96/the-essence-of-aho-corasick-algorithm-4056dd742842
https://westes.github.io/flex/manual/

	I.  Introduction
	II. THEORETICAL BASIS
	A. Pattern Matching
	B. Knuth-Morris Pratt (KMP) Algorithm
	C. Aho-Corasick Algorithm
	D. Boyer-Moore Algorithm
	E. Regular Expression
	F. Lexical Analyzer
	G. Finite Automata

	III. IMPLEMENTATION
	IV. RESULTS
	V. CONCLUSION
	VI. APPENDIX
	Video Link at Youtube
	Acknowledgment
	References


